

OST Mission Concept

Dave Leisawitz, NASA Study Scientist

on behalf of the OST mission concept study team

Iterate concept with STDT

Study approach

Identify visionary, robust, and compelling science questions

Derive from those questions a set of high-priority measurement requirements for the mission

Choose a mission architecture

Evaluate trades and develop mission point design

Determine technology needs

Estimate costs (baseline concept and options)

Present to Decadal Survey

Concept 1

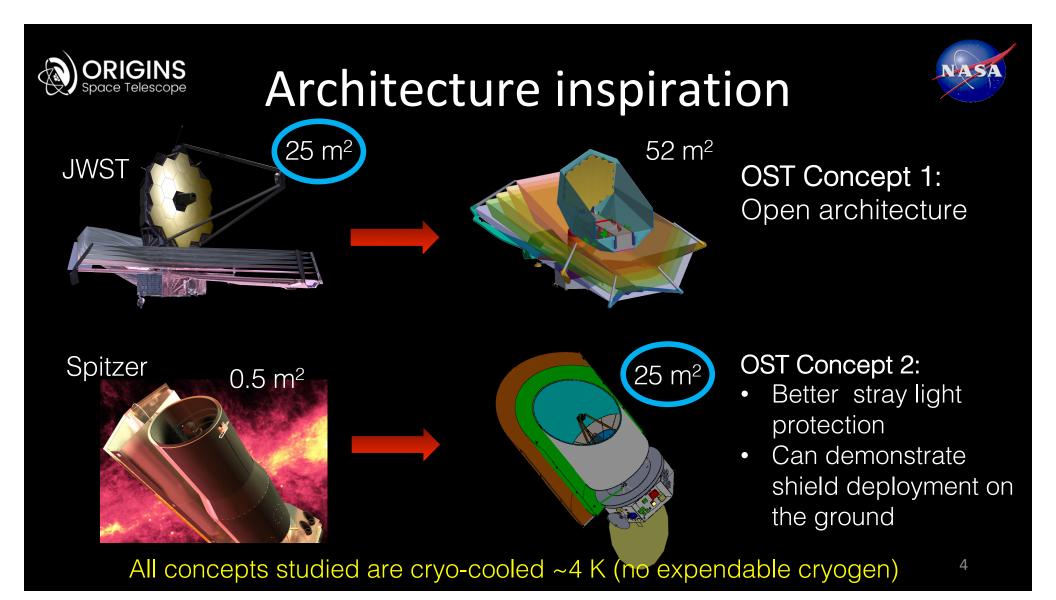
Architecture evolution

retain high-value science

constrain cost

reduce size

eliminate complex deployments, reduce risk


Concept 2

optimization

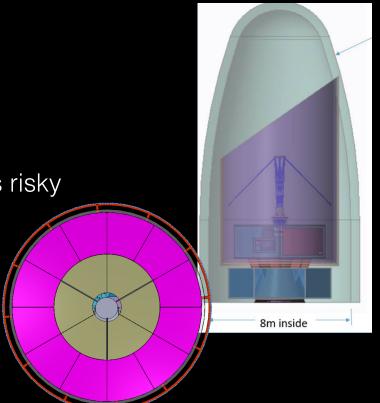
Decadal baseline concept with upscope options

Major Architecture Trades

Telescope size

JWST collecting area to capture transit spectroscopy from enough exoplanets

Deployed vs. Non-deployed

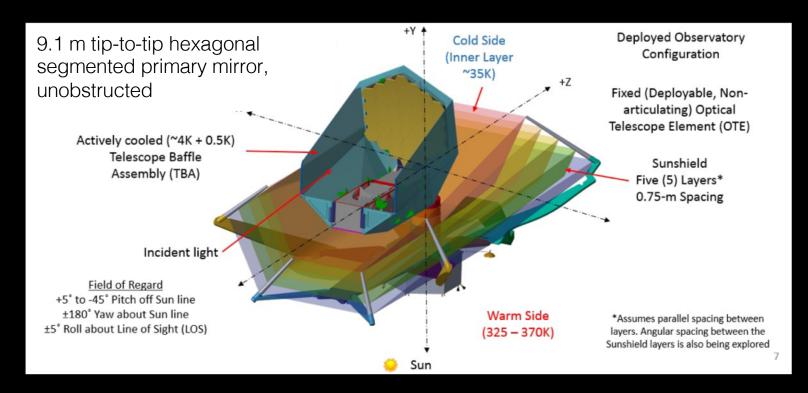

- Non-deployed optics for simplicity
- SLS (or BFR) required, but viewed as less risky than deployment

On- vs. off-axis

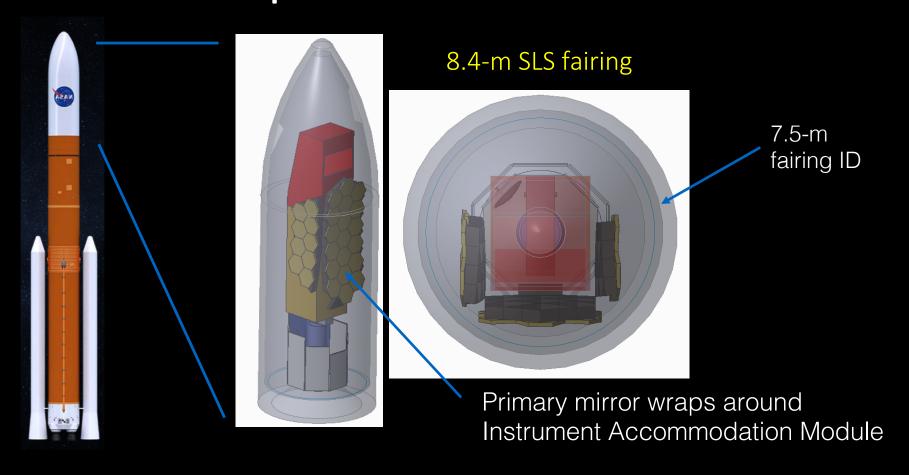
On-axis for ease of packaging

Size of primary mirror segments

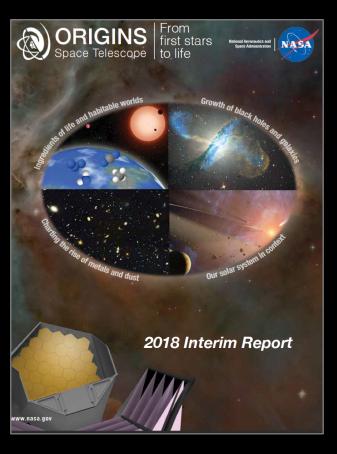
- JWST size, but forming circular aperture
 - 18 segments with only two prescriptions
 - Manufacturing facilities exist



OST Concept 1


- Satisfies nearly all of the science team's "desirements"
- No cost constraint

Concept 1 stowed for launch



Concept 1 is described in the OST Interim Report

- Available on our website https://asd.gsfc.nasa.gov/firs/docs/ or
- https://arxiv.org/abs/1809.09702

Science drivers for OST C2

OST is a mid- and far-IR observatory whose design is driven by community-prioritized science to answer three questions:

- 1. How common are life-bearing planets orbiting M dwarf stars?
 - Biosignatures in the mid-infrared
- 2. How do the conditions for habitability develop during the process of planet formation?
 - Follow the trail of water (vapor and ice) from the interstellar medium to nascent planets
- 3. How do galaxies form stars, grow their central supermassive black holes, and make heavy elements over time?
 - Probe the universe deeply in key diagnostic spectral lines without the adverse effect of dust extinction

Derived requirements

The prioritized scientific objectives for OST require:

- exquisite sensitivity (e.g., 5σ sensitivity to spectral lines at 10^{-20} W m⁻² in 1 hour);
- spectroscopy with resolving power ranging from 10 to >10⁵ in approximately order-of-magnitude increments;
- an ability to survey large areas in a reasonable observing time (e.g., a deep extragalactic "Legacy survey" covering 10 deg² in 1000 hours); and
- superlative stability (<5 ppm) to enable a fruitful search for biosignatures in the spectra of transiting exoplanets.

The prioritized scientific objectives do <u>not</u> require high (subarcsecond) angular resolution.

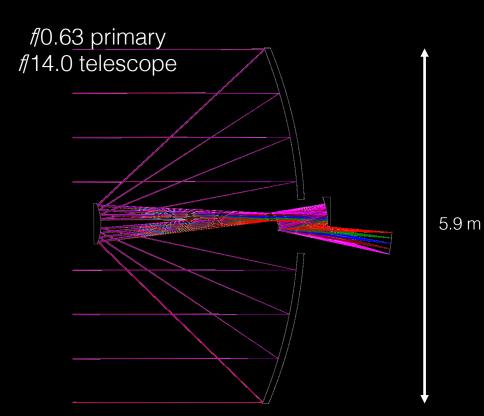
A cold (4.5 K) telescope equipped with next-generation detectors in high pixel count arrays can approach the astronomical background photon noise limit and satisfy the requirements.

shallow

OST concept comparison

Parameter	OST Concept 1	OST Concept 2	
Wavelength range (µm)	5 - 660	5 - 588	
Telescope Field of View (arcmin)	25 x 15	40 x 15	
Launch Vehicle/Configuration	SLS with 8.4 m fairing	Compatible with SLS with 8.4 m fairing; Space X BFR with ~9 m fairing;	
		Blue Origins New Glenn with ≥7 m fairing	
Telescope first-order specifications			
Aperture size	9.1 m hexagonal, tip-to-tip; segmented; folded when stowed for launch,	5.9 m diameter (circular); no deployment	
	and deployed in space		
Collecting area (m ²)	52	25	
f-number	f/12.8	f/14.0	
Effective Focal Length (m)	116	82.6	
Design form	Three-mirror anastigmat, unobstructed (off-axis pupil)	Three mirror anastigmat, on-axis pupil, 0.9 m central obstruction	
Operating temperature (K)	4	4	
Spatial resolution	Diffraction limited at λ = 30 μ m (MISC instrument diffraction limited at 5	Diffraction limited at λ = 30 μ m (MILC instrument diffraction limited at 5	
	μm with deformable mirror)	um with deformable mirror	
Pointing requirements	Knowledge: 30 mas (MRSS inertial point); Control: 44 mas; Jitter: 22 mas	TBD; approximately the same as Concept 1	
	RMS (at MISC; telescope rqmt TBD)		
Instrument suite			
	Mid-Infrared Imager Spectrometer Coronagraph (MISC)	Mid-Infrared Imager Spectrometer Coronagraph (MISC)	
	• Wavelength range: 5 - 38 μm	Wavelength range: 5 - 38 μm	
	Imaging, spectroscopy	Imaging, spectroscopy	
	Coronagraphy (10 ⁻⁶ contrast)	 Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a 	
	Transit Spectrometer (<10 ppm stability on a timescale of hours to days)	timescale of hours to days)	
	Study partners: JAXA, NASA ARC	Study partners: JAXA, NASA ARC	
	Medium Resolution Survey Spectrograph (MRSS)	Origins Survey Spectrometer (OSS)	

OST instruments by concept



Mid-Infrared Imager Spectrometer Coronagraph (MISC) • Wavelength range: 5 - 38 μm • Imaging, spectroscopy • Coronagraphy (10° contrast) • Transit Spectrometer (-10 ppm stability on a timescale of hours to days) • Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) • Wavelength range: 30 - 660 μm • Multi-band spectroscopy • Study partner: JPL Migh Resolution Survey Spectrograph (MRSS) • Wavelength range: 30 - 660 μm • Multi-band slit spectroscopy, with all bands in one slit; "100 diffraction-limited beams per slit • FTS mode provides R = 43,000 x (112 μm/λ) • High Resolution Spectrometer (HRS) • Wavelength range: 25 - 200 μm • High-resolution, high-sensitivity spectroscopy • Study partner: NASA GSFC Far-Infrared Imager and Polarimeter (FIP) • Wavelength bands: 40, 80, 120, 240 μm • Broadband imaging • Field of view 2.5° x 5′, 7.5° x 15° • Differential polarimetric imaging • Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Multi-band high-resolution spectroscopy • Instantaneous FoV: 2.1° x 2.1° g 480 μm; 1.3°x1.3° @ 300 μm; 6 x 50 x	Instrument suite	Concept 1	Concept 2
 Imaging, spectroscopy Coronagraphy (10° contrast) Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a timescale of hours to days) Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) Wavelength range: 30 - 660 μm Multi-band spectroscopy Multi-band spectroscopy Multi-band silt spectroscopy, with all bands in one slit; ~100 diffraction-limited beams per slit FTS mode provides R = 43,000 x (112 μm/λ) FTS mode provides R = 43,000 x (112 μm/λ) FTS mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam High-resolution, high-sensitivity spectroscopy Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Pifferential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Istudy partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 61 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Istudy partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 61 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Istudy partner: Buropean consortium Partiataneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		Mid-Infrared Imager Spectrometer Coronagraph (MISC)	Mid-Infrared Imager Spectrometer Coron (MISC)
- Coronagraphy (10° contrast) - Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a timescale of hours to days) - Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) Wavelength range: 30 - 660 μm Multi-band spectroscopy Study partners: JPL		Wavelength range: 5 - 38 μm	Wavelength range: 5 - 38 μm
timescale of hours to days) Transit Spectrometer (-10 ppm stability on a timescale of hours to days) Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) Wavelength range: 30 - 660 µm Multi-band spectroscopy Study partner: JPL Wavelength range: 25 - 588 µm Multi-band silt spectroscopy, with all bands in one slit; ~100 diffraction-limited beams per slit FTS mode provides R = 43,000 x (112 µm/λ) FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) FTS and High-re		Imaging, spectroscopy	Imaging, spectroscopy
* Transit Spectrometer (<10 ppm stability on a timescale of hours to days) * Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) * Wavelength range: 30 - 660 µm * Multi-band spectroscopy * Study partner: JPL * High-resolution be provides R = 43,000 x (112 µm/λ) * High-resolution mode provides R = 325,000 x (112 µm/λ) * High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * FTS and High-resolution mode provides R = 325,000 x (112 µm/λ) * Study partners: JPL, NASA GSFC * Far-infrared Imager and Polarimeter (FIP) * Wavelength bands: 40, 80, 120, 240 µm * Wavelength bands: 40, 80, 120, 240 µm * Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle * Study partner: NASA GSFC * Wavelength bands: 617 - 397 µm; 397 - 252 µm; 252 - 168 µm; and 168 - 111 µm * Wavelength bands: 617 - 397 µm; 397 - 252 µm; 252 - 168 µm; and 168 - 111 µm * Wavelen		Coronagraphy (10 ⁻⁶ contrast)	Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a
Study partners: JAXA, NASA ARC Medium Resolution Survey Spectrograph (MRSS) Wavelength range: 30 - 660 μm Multi-band spectroscopy Study partner: JPL High resolution Spectrometer (HRS) Wavelength range: 25 - 588 μm Multi-band slit spectroscopy, with all bands in one slit; ~100 diffraction-limited beams per slit FTS mode provides R = 43,000 x (112 μm/λ) High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-resolution in single diffraction-limited beam High-resolution, high-sensitivity spectroscopy Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium **R = 10 ⁵ - 10 ⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			timescale of hours to days)
 Wavelength range: 30 - 660 μm Multi-band spectroscopy Study partner: JPL Multi-band slit spectroscopy, with all bands in one slit; ~100 diffraction-limited beams per slit FTS mode provides R = 43,000 x (112 μm/λ) High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x5', 7.5' x 15' Pield of view 2.5' x5', 7.5' x 15' Pield of view 2.5' x5', 7.5' x 15' Pield of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1" in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-baam high-resolution spectroscopy Study partner: European consortium P R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			Study partners: JAXA, NASA ARC
 Wavelength range: 30 - 660 μm Multi-band spectroscopy Study partner: JPL Multi-band slit spectroscopy, with all bands in one slit; ~100 diffraction-limited beams per slit FTS mode provides R = 43,000 x (112 μm/λ) High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x5', 7.5' x 15' Pield of view 2.5' x5', 7.5' x 15' Pield of view 2.5' x5', 7.5' x 15' Pield of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1" in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-baam high-resolution spectroscopy Study partner: European consortium P R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		Madium Paralution Survey Spectrograph (MDSS)	Origins Sunray Spactromator (OSS)
 Multi-band spectroscopy Study partner: JPL FTS mode provides R = 43,000 x (112 μm/λ) High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam Study partners: JPL, NASA GSFC Wavelength range: 25 - 200 μm High-resolution, high-sensitivity spectroscopy Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-band slit spectroscopy Instantaneous FOV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
Study partner: JPL limited beams per slit			
FTS mode provides R = 43,000 x (112 μm/λ) High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-resolution mode provides R = 325,000 x (112 μm/λ) FTS and High-res modes in single diffraction-limited beam Study partners: JPL, NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 40, 80, 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			, , , , , , , , , , , , , , , , , , , ,
 High-resolution mode provides R = 325,000 x (112 μm/λ.) FTS and High-res modes in single diffraction-limited beam Study partners: JPL, NASA GSFC Study partners: JPL, NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Polifferential polarimetric imaging Study partner: NASA GSFC Feled of view 1.5' x 5', 7.5' x 15' Field of view 1.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1" in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		- Study partiter. 3FE	,
FTS and High-res modes in single diffraction-limited beam High Resolution Spectrometer (HRS) • Wavelength range: 25 - 200 μm • High-resolution, high-sensitivity spectroscopy • Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) • Wavelength bands: 40, 80, 120, 240 μm • Broadband imaging • Field of view 2.5' x 5', 7.5' x 15' • Differential polarimetric imaging • Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Multi-beam high-resolution spectroscopy • Study partner: European consortium • R = 10 ⁵ - 10 ⁷ spectroscopy • Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			
High Resolution Spectrometer (HRS) • Wavelength range: 25 - 200 μm • High-resolution, high-sensitivity spectroscopy • Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) • Wavelength bands: 40, 80, 120, 240 μm • Broadband imaging • Field of view 2.5′ x 5′, 7.5′ x 15′ • Differential polarimetric imaging • Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Multi-beam high-resolution spectroscopy • Study partner: European consortium • Study partner: European consortium • Study partner: European consortium • Study partner: European sonsortium • Study partner: European sonsortium sonso			
 Wavelength range: 25 - 200 μm High-resolution, high-sensitivity spectroscopy Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Multi-beam high-resolution spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		High Resolution Spectrometer (HRS)	
 High-resolution, high-sensitivity spectroscopy Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Mayelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - Multi-beam high-resolution spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			Study partilers. Jrt, NASA GSFC
 Study partner: NASA GSFC Far-infrared Imager and Polarimeter (FIP) Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Multi-beam high-resolution spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
Far-infrared Imager and Polarimeter (FIP) • Wavelength bands: 40, 80, 120, 240 μm • Broadband imaging • Field of view 2.5' x 5', 7.5' x 15' • Differential polarimetric imaging • Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Multi-beam high-resolution spectroscopy • Study partner: European consortium Far-infrared Imager and Polarimeter (FIP) • Wavelength bands: 40, 80, 120, 240 μm • Broadband imaging • Broadband imaging • Pield of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm • Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle • Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm • Study partner: European consortium • R = 10 ⁵ - 10 ⁷ spectroscopy • Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			
 Wavelength bands: 40, 80, 120, 240 μm Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Pield of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Wavelength bands: 60 - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			Far-infrared Imager and Polarimeter (FIP)
 Broadband imaging Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Broadband imaging Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
 Field of view 2.5' x 5', 7.5' x 15' Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Field of view 13.5' x 9' @ 120 and 240 μm, 4.5' x 3' @ 40 and 80 μm Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
 Differential polarimetric imaging Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Polarization sensitivity: 0.1% in linear and circular; ±1° in pol. Angle Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
 Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Study partner: European consortium Study partner: NASA GSFC Heterodyne Receiver for OST (HERO) Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
Heterodyne Receiver for OST (HERO) • Wavelength bands: 63 - 66, 111 - 641 μm • Multi-beam high-resolution spectroscopy • Study partner: European consortium Heterodyne Receiver for OST (HERO) • Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm • R = 10 ⁵ - 10 ⁷ spectroscopy • Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			
 Wavelength bands: 63 - 66, 111 - 641 μm Multi-beam high-resolution spectroscopy Study partner: European consortium Wavelength bands: 617 - 397 μm; 397 - 252 μm; 252 - 168 μm; and 168 - 111 μm R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 			
 Multi-beam high-resolution spectroscopy Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		 Wavelength bands: 63 - 66, 111 - 641 um 	• Wavelength bands: 617 - 397 um: 397 - 252 um: 252 - 168 um: and 168 -
 Study partner: European consortium R = 10⁵ - 10⁷ spectroscopy Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm; 		. ,	
• Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3'x1.3' @ 300 μm;			'
0.6 x0.6 @ 200 μm; 0.6 x0.6 @ 130 μm			
Study partner: European consortium			

Three-mirror (TMA) selected over two-mirror system

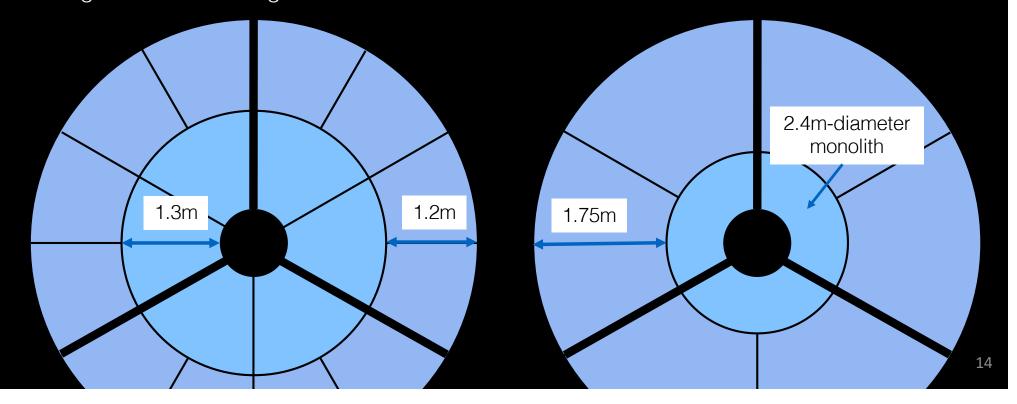
- Larger FoV
- Improved imaging performance
- Incorporate Field Steering Mirror

On-axis selected over off-axis

- Easier to package in fairing
- Easier fabrication/testing more symmetric segments

Circular pupil selected over elliptical or rectangular

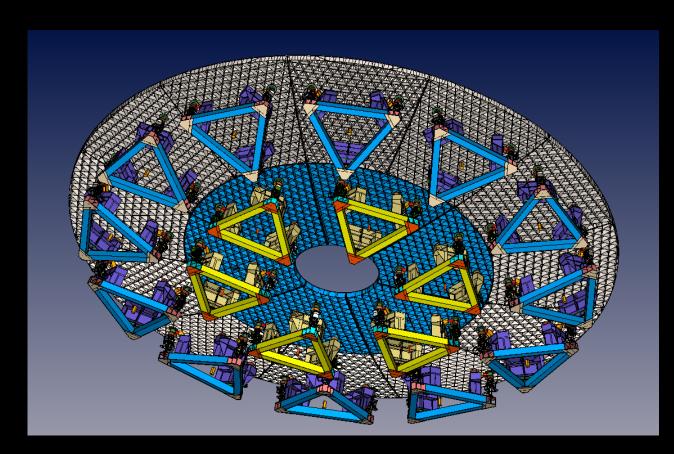
Cleaner/symmetric PSFs



Primary mirror segments

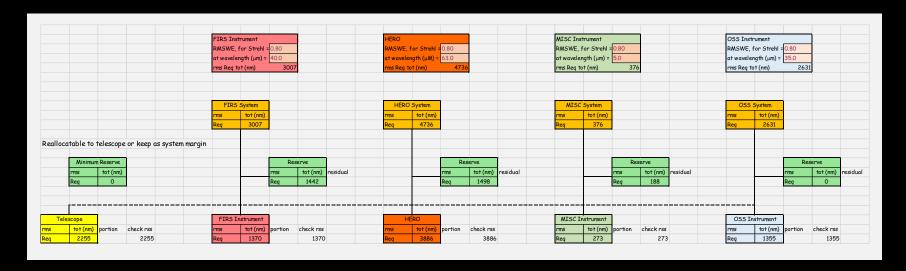
Option 1a: replace Herschel-sized (3.5m) monolith w/ six segments.12 segments in outer ring.

Option 2a: Hubble-sized (2.4m) monolith surrounded by ring of six segments.



3 dof segment actuation

Only need to adjust piston, tip and tilt.



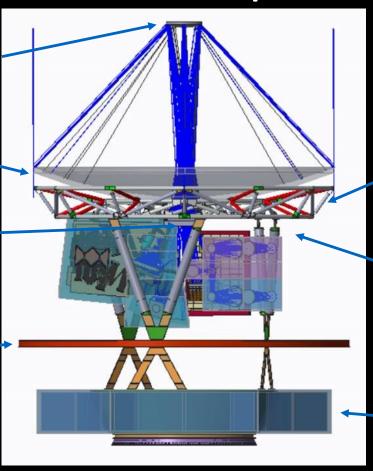
Shows how we take advantage of the relaxed WFE tolerance.

No cryo-null figuring

Deepen Budget as architecture matures

- Includes alignment of telescope optics and instruments
- low, mid, high allocations
- Break out thermal and dynamic terms
- Focus allocation

OST Concept 2



Secondary Mirror (SM)

Primary Mirror (PM)

Tertiary Mirror (TM)

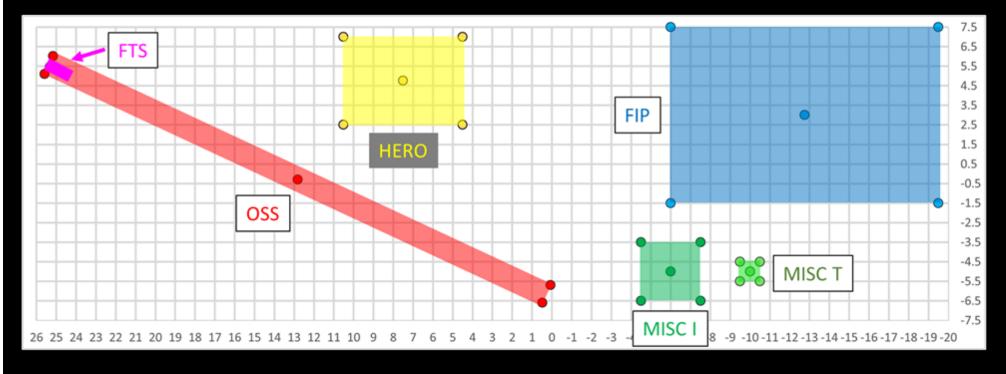
~35K boundary

Primary Mirror Backplane

Instrument
Mounting
Structure (IMS)
(not shown)

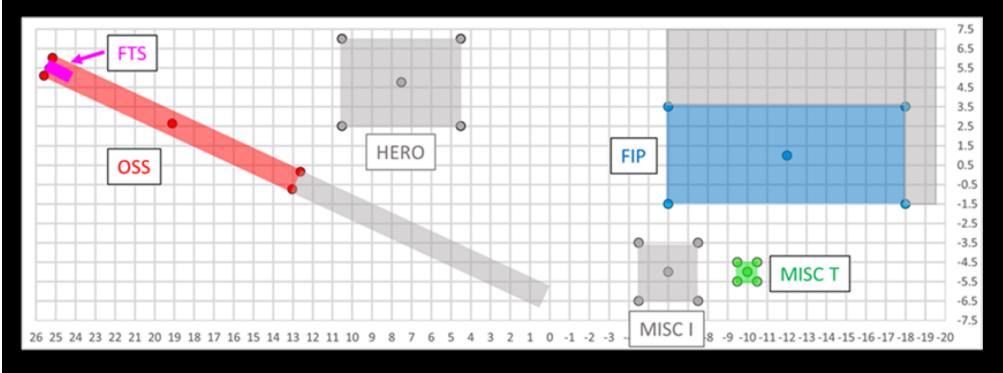
Spacecraft bus

Baseline mission concept



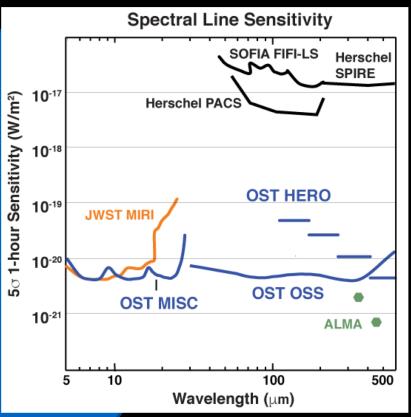
- 5.9 m diameter telescope, same collecting area as JWST
- MISC Transit Spectrometer (2.8 20 μm)
- OSS instrument with all 6 bands, FTS, and etalon, with half the original number of pixels (reduced spatial dimension)
- FIP instrument with 50 and 250 μm channels, polarization, and half the original number of pixels
- Temperature increased from 4 to 4.5 K modest cost saving, but reduces risk and relaxes detector NEP requirement
- Dropped the heterodyne instrument, HERO, and the MISC imager, but maintain volumes allocated to these items
- Descoped items become upscope options
- Changes have only a modest impact on the highest priority science

OST Field of View: Concept 2



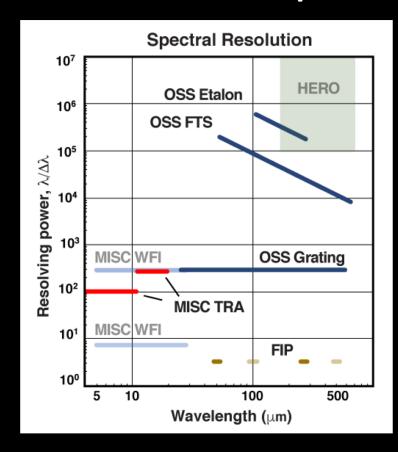
OSS – Origins Survey Spectrometer HERO – Heterodyne Receiver for OST FIP – Far-IR Imager/Polarimeter MISC – Mid-IR Imager and Spectrometer (WFI = Wide-field Imager; TRA = Transit Spectrometer)

OST Field of View: Baseline


OSS – Origins Survey Spectrometer HERO – Heterodyne Receiver for OST FIP – Far-IR Imager/Polarimeter MISC – Mid-IR Imager and Spectrometer (WFI = Wide-field Imager; TRA = Transit Spectrometer)

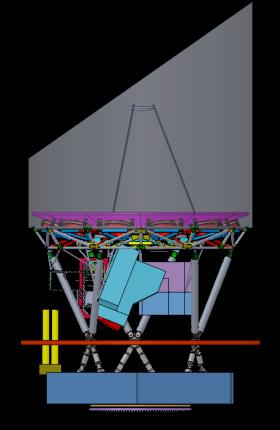
OST sensitivity

Equivalent differenc optical telescope to 1000x sensitivity



OST is about 3 orders of magnitude more sensitive than Herschel, thanks to its cold temperature and next-generation detectors.

OST spectral resolution



OST's instruments collectively provide the required spectral resolution.

The OST study team will present a scientifically compelling, <u>low-risk</u>, executable mission concept to the 2020 Decadal Survey.

